Temporal trends in deep ocean Redfield ratios.

نویسندگان

  • M Pahlow
  • U Riebesell
چکیده

The Redfield ratio [carbon:nitrogen:phosphorus (C:N:P)] of particle flux to the deep ocean is a key factor in marine biogeochemical cycling. Changes in oceanic carbon sequestration have been linked to variations in the Redfield ratio on geological time scales, but this ratio generally is assumed to be constant with time in the modern ocean. However, deep-water Redfield ratios in the northern hemisphere show evidence for temporal trends over the past five decades. The North Atlantic Ocean exhibits a rising N:P ratio, which may be related to increased deposition of atmospheric nitrous oxides from anthropogenic N emissions. In the North Pacific Ocean, increasing C:N and C:P ratios are accompanied by rising remineralization rates, which suggests intensified export production. Stronger export of carbon in this region may be due to enhanced bioavailability of aeolian iron. These findings imply that the biological part of the marine carbon cycle currently is not in steady state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What story is told by oceanic tracer concentrations?

In their report "Temporal trends in deep ocean Redfield ratios" (4 Feb., p. 831), Pahlow and Riebesell suggest that the marine biota has changed in the last few decades in response to human activities. These findings challenge the steady-state paradigm of ocean biogeochemistry and might have important implications for the global carbon cycle. However, the signals that Pahlow and Riebesell analy...

متن کامل

The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio.

One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we...

متن کامل

C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean

Nitrogen (N) and phosphorus (P) availability, in addition to other macroand micronutrients, determine the strength of the ocean’s carbon (C) uptake, and variation in the N : P ratio of inorganic nutrient pools is key to phytoplankton growth. A similarity between C : N : P ratios in the plankton biomass and deep-water nutrients was observed by Alfred C. Redfield around 80 years ago and suggested...

متن کامل

Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton

The elemental stoichiometry of sea water and particulate organic matter is remarkably similar. This observation led Redfield to hypothesize that the oceanic ratio of nitrate to phosphate is controlled by the remineralization of phytoplankton biomass1. The Redfield ratio is used universally to quantitatively link the marine nitrogen and phosphorus cycles in numerous biogeochemical applications2–...

متن کامل

New Production Regulates Export Stoichiometry in the Ocean

The proportion in which carbon and growth-limiting nutrients are exported from the oceans' productive surface layer to the deep sea is a crucial parameter in models of the biological carbon pump. Based on >400 vertical flux observations of particulate organic carbon (POC) and nitrogen (PON) from the European Arctic Ocean we show the common assumption of constant C:N stoichiometry not to be met....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 287 5454  شماره 

صفحات  -

تاریخ انتشار 2000